Trajectory Simulation of Meteors Assuming Mass Loss and Fragmentation

Gary A. Allen, Jr., Dinesh K. Prabhu, and David A. Saunders
ERC, Inc. at NASA Ames Research Center, Moffett Field, CA 94035, USA
1st International Workshop on PHA Characterization, Atmospheric Entry and Risk Assessment

, M8seamh ceﬂle, 7 —9 July 2015, NASA Ames Research Center, California

N

Introduction and Objective Trajectory Simulation Process with Meteor Physics Equations
TRAJ Features:
* Program used to simulate atmospheric flight trajectories of entry capsules [1] (i) S (=
(Velocity, Entry Altitude, Entry
* Includes models of atmospheres of different planetary destinations — Earth, Mars, Venus, Jupiter, Saturn, Uranus, Titan, ... Angles, Geographic Location,
L Meteor Shape, Size and Mass) y

e Solves 3-degrees of freedom (3DoF) equations for a single body treated as a point mass
* Also supports 6-DoF trajectory simulation and Monte Carlo analyses
e Uses Fehlberg-Runge-Kutta (4t"-5t™ order) time integration with automatic step size control

* Includes rotating spheroidal planet with gravitational field having a J, harmonic

* Includes a variety of engineering aerodynamic and heat flux models
e Capable of specifying events — heatshield jettison, parachute deployment, etc. — at predefined altitudes or Mach number

* Has material thermal response models of typical aerospace materials integrated

Modify trajectory simulation tool, TrAJ, to make it suitable for meteor entries including mass loss & fragmentation

Modifications Made to TrRAJ for Meteor Simulation
* NASA’s Galileo probe to Jupiter only one that experienced significant mass loss

* Entry capsule was a 45° sphere-cone with fully-dense carbon phenolic as heatshield material / - Time
e M. Tauber etal. [2] developed JAE code for simulation of Galileo probe (Jupiter entry) . A, = Cross sectional area at entry Shape Change Equation
, : . Mass Change Equation : .
* JAE logic incorporated into Traj m_ = Mass at time ¢ (assuming spherical meteor)
m
— Sphere-cone shape replaced by sphere : : :
2 | i fp yhp . u, = Relative velocity at time ¢ / 218
— Mass loss equation of meteor physics use _ ’ _
. et . dmm 1 3 CHAm p, = Atmospheric density time ¢ Am mm
— Allow input specification of heat of ablation, Q —_— IOaum Z LTS | TN
— Allow heat transfer coefficient to vary in time dt 2 Q Q = Heat of ablation 4 m
— Time-varying heat transfer coefficients from detailed flow computations curve fit as a function of altitude, velocity, and size C, = Heattra nsfer coefficient \ 0
Test Case: Chelyabinsk [3] Heat Transfer Coefficient, C,, Model Sensitivity to Basic Assumptions: Entry Mass, Fragmentation,
Heat Transfer Coefficient and Heat-of-Ablation
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20 | |  Could tektites [4] be used as additional test cases?
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